Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.739
Filtrar
1.
Genome Res ; 33(8): 1242-1257, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37487647

RESUMEN

A complex interplay between mRNA translation and cellular respiration has been recently unveiled, but its regulation in humans is poorly characterized in either health or disease. Cancer cells radically reshape both biosynthetic and bioenergetic pathways to sustain their aberrant growth rates. In this regard, we have shown that the molecular chaperone TRAP1 not only regulates the activity of respiratory complexes, behaving alternatively as an oncogene or a tumor suppressor, but also plays a concomitant moonlighting function in mRNA translation regulation. Herein, we identify the molecular mechanisms involved, showing that TRAP1 (1) binds both mitochondrial and cytosolic ribosomes, as well as translation elongation factors; (2) slows down translation elongation rate; and (3) favors localized translation in the proximity of mitochondria. We also provide evidence that TRAP1 is coexpressed in human tissues with the mitochondrial translational machinery, which is responsible for the synthesis of respiratory complex proteins. Altogether, our results show an unprecedented level of complexity in the regulation of cancer cell metabolism, strongly suggesting the existence of a tight feedback loop between protein synthesis and energy metabolism, based on the demonstration that a single molecular chaperone plays a role in both mitochondrial and cytosolic translation, as well as in mitochondrial respiration.


Asunto(s)
Mitocondrias , Proteínas Mitocondriales , Chaperonas Moleculares , Neoplasias , Biosíntesis de Proteínas , Humanos , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Biosíntesis de Proteínas/genética , Biosíntesis de Proteínas/fisiología , Ribosomas/genética , Ribosomas/metabolismo , Extensión de la Cadena Peptídica de Translación/genética , Extensión de la Cadena Peptídica de Translación/fisiología , Mitocondrias/genética , Mitocondrias/metabolismo
3.
Sheng Wu Gong Cheng Xue Bao ; 38(5): 1706-1723, 2022 May 25.
Artículo en Chino | MEDLINE | ID: mdl-35611724

RESUMEN

With the development of high-throughput sequencing technology, circular RNAs (circRNAs) have gradually become a hotspot in the research on non-coding RNA. CircRNAs are produced by the covalent circularization of a downstream 3' splice donor and an upstream 5' splice acceptor through backsplicing, and they are pervasive in eukaryotic cells. CircRNAs used to be considered byproducts of false splicing, whereas an explosion of related studies in recent years has disproved this misconception. Compared with the rich studies of circRNAs in animals, the study of circRNAs in plants is still in its infancy. In this review, we introduced the discovery of plant circRNAs, the discovery of plant circRNAs, the circularization feature, expression specificity, conservation, and stability of plant circRNAs and expounded the identification tools, main types, and biogenesis mechanisms of circRNAs. Furthermore, we summarized the potential roles of plant circRNAs as microRNA (miRNA) sponges and translation templates and in response to biotic/abiotic stress, and briefed the degradation and localization of plant circRNAs. Finally, we discussed the challenges and proposed the future directions in the research on plant circRNAs.


Asunto(s)
MicroARNs , ARN Circular , ARN de Planta , Animales , MicroARNs/genética , MicroARNs/metabolismo , Biogénesis de Organelos , Plantas/genética , Plantas/metabolismo , Biosíntesis de Proteínas/fisiología , ARN Circular/genética , ARN Circular/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Investigación/tendencias , Estrés Fisiológico/genética
4.
Dev Cell ; 57(10): 1241-1256.e8, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35580611

RESUMEN

Angiogenesis, the active formation of new blood vessels from pre-existing ones, is a complex and demanding biological process that plays an important role in physiological as well as pathological settings. Recent evidence supports cell metabolism as a critical regulator of angiogenesis. However, whether and how cell metabolism regulates endothelial growth factor receptor levels and nucleotide synthesis remains elusive. We here shown in both human cell lines and mouse models that during developmental and pathological angiogenesis, endothelial cells (ECs) use glutaminolysis-derived glutamate to produce aspartate (Asp) via aspartate aminotransferase (AST/GOT). Asp leads to mTORC1 activation which, in turn, regulates endothelial translation machinery for VEGFR2 and FGFR1 synthesis. Asp-dependent mTORC1 pathway activation also regulates de novo pyrimidine synthesis in angiogenic ECs. These findings identify glutaminolysis-derived Asp as a regulator of mTORC1-dependent endothelial translation and pyrimidine synthesis. Our studies may help overcome anti-VEGF therapy resistance by targeting endothelial growth factor receptor translation.


Asunto(s)
Ácido Aspártico , Células Endoteliales , Diana Mecanicista del Complejo 1 de la Rapamicina , Neovascularización Patológica , Neovascularización Fisiológica , Animales , Ácido Aspártico/metabolismo , Línea Celular , Células Endoteliales/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica/fisiología , Biosíntesis de Proteínas/fisiología , Pirimidinas , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
5.
Cell Rep ; 38(2): 110208, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35021090

RESUMEN

Midbrain dopaminergic (mDA) neurons exhibit extensive dendritic and axonal arborizations, but local protein synthesis is not characterized in these neurons. Here, we investigate messenger RNA (mRNA) localization and translation in mDA neuronal axons and dendrites, both of which release dopamine (DA). Using highly sensitive ribosome-bound RNA sequencing and imaging approaches, we find no evidence for mRNA translation in mDA axons. In contrast, mDA neuronal dendrites in the substantia nigra pars reticulata (SNr) contain ribosomes and mRNAs encoding the major components of DA synthesis, release, and reuptake machinery. Surprisingly, we also observe dendritic localization of mRNAs encoding synaptic vesicle-related proteins, including those involved in exocytic fusion. Our results are consistent with a role for local translation in the regulation of DA release from dendrites, but not from axons. Our translatome data define a molecular signature of sparse mDA neurons in the SNr, including the enrichment of Atp2a3/SERCA3, an atypical ER calcium pump.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Biosíntesis de Proteínas/fisiología , ARN Mensajero/metabolismo , Animales , Axones/metabolismo , Dendritas/metabolismo , Dopamina/metabolismo , Femenino , Masculino , Mesencéfalo/fisiología , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología , Biosíntesis de Proteínas/genética , ARN Mensajero/genética , Ribosomas/metabolismo , Análisis de Secuencia de ARN/métodos , Sustancia Negra/metabolismo
6.
Int J Biol Macromol ; 199: 252-263, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-34995670

RESUMEN

Translation of RNA to protein is a key feature of cellular life. The fidelity of this process mainly depends on the availability of correctly charged tRNAs. Different domains of tRNA synthetase (aaRS) maintain translation quality by ensuring the proper attachment of particular amino acid with respective tRNA, thus it establishes the rule of genetic code. However occasional errors by aaRS generate mischarged tRNAs, which can become lethal to the cells. Accurate protein synthesis necessitates hydrolysis of mischarged tRNAs. Various cis and trans-editing proteins are identified which recognize these mischarged products and correct them by hydrolysis. Trans-editing proteins are homologs of cis-editing domains of aaRS. The trans-editing proteins work in close association with aaRS, Ef-Tu, and ribosome to prevent global mistranslation and ensures correct charging of tRNA. In this review, we discuss the major trans-editing proteins and compared them with their cis-editing counterparts. We also discuss their structural features, biochemical activity and role in maintaining cellular protein homeostasis.


Asunto(s)
Aminoacil-ARNt Sintetasas , Biosíntesis de Proteínas , Aminoacil-ARNt Sintetasas/química , Biosíntesis de Proteínas/fisiología , Modificación Traduccional de las Proteínas/fisiología , ARN de Transferencia/química
7.
Bioengineered ; 13(2): 3070-3081, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35100096

RESUMEN

Hydrostatic pressure is known to regulate bovine nucleus pulposus cell metabolism, but its mechanism in human nucleus pulposus cells (HNPCs) remains obscure, which attracts our attention and becomes the focus in this study. Specifically, HNPCs were treated with SKL2001 (an agonist in the Wnt/ß-catenin pathway) or XAV-939 (an inhibitor of the Wnt/ß-catenin pathway), and pressurized under the hydrostatic pressure of 1, 3 and 30 atm. The viability, apoptosis and proteoglycan synthesis of treated HNPC were assessed by CCK-8, flow cytometry and radioisotope incorporation assays. The levels of extracellular matrix, Collagen-II, matrix metalloproteinase 3 (MMP3), Wnt-3a and ß-catenin were measured by toluidine blue staining, immunocytochemistry and Western blot. Appropriate hydrostatic stimulation (3 atm) enhanced the viability and proteoglycan synthesis yet inhibited the apoptosis of HNPCs, which also up-regulated extracellular matrix and Collagen-II levels, and down-regulated MMP3, Wnt-3a and ß-catenin levels in treated HNPCs. Furthermore, high hydrostatic pressure (30 atm) inhibited the viability and proteoglycan synthesis, and promoted the morphological change and apoptosis of HNPCs, which also down-regulated extracellular matrix and Collagen-II levels and up-regulated MMP3, Wnt-3a and ß-catenin levels. Besides, SKL2001 reversed the effects of hydrostatic pressure (3 atm) on inhibiting Wnt-3a, ß-catenin, and MMP3 levels and promoting Collagen-II level in HNPC; whereas, XAV-939 reversed the effects of high hydrostatic pressure (30 atm) on promoting MMP3, Wnt-3a, and ß-catenin levels and inhibiting Collagen-II level and proteoglycan synthesis of HNPCs. Collectively, high hydrostatic pressure promoted the apoptosis and inhibited the viability of HNPCs via activating the Wnt/ß-catenin pathway.


Asunto(s)
Matriz Extracelular/metabolismo , Núcleo Pulposo/fisiología , Proteoglicanos/biosíntesis , Apoptosis/fisiología , Células Cultivadas , Humanos , Presión Hidrostática/efectos adversos , Degeneración del Disco Intervertebral/etiología , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/patología , Núcleo Pulposo/citología , Núcleo Pulposo/metabolismo , Biosíntesis de Proteínas/fisiología , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo
8.
Int J Mol Sci ; 23(2)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35054973

RESUMEN

Among the 20 amino acids needed for protein synthesis, Tryptophan (Trp) is an aromatic amino acid fundamental not only for the synthesis of the major components of living cells (namely, the proteins), but also for the maintenance of cellular homeostasis [...].


Asunto(s)
Redes y Vías Metabólicas , Biosíntesis de Proteínas , Triptófano/metabolismo , Susceptibilidad a Enfermedades , Homeostasis , Humanos , Biosíntesis de Proteínas/fisiología
9.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35042799

RESUMEN

Proteins, as essential biomolecules, account for a large fraction of cell mass, and thus the synthesis of the complete set of proteins (i.e., the proteome) represents a substantial part of the cellular resource budget. Therefore, cells might be under selective pressures to optimize the resource costs for protein synthesis, particularly the biosynthesis of the 20 proteinogenic amino acids. Previous studies showed that less energetically costly amino acids are more abundant in the proteomes of bacteria that survive under energy-limited conditions, but the energy cost of synthesizing amino acids was reported to be weakly associated with the amino acid usage in Saccharomyces cerevisiae Here we present a modeling framework to estimate the protein cost of synthesizing each amino acid (i.e., the protein mass required for supporting one unit of amino acid biosynthetic flux) and the glucose cost (i.e., the glucose consumed per amino acid synthesized). We show that the logarithms of the relative abundances of amino acids in S. cerevisiae's proteome correlate well with the protein costs of synthesizing amino acids (Pearson's r = -0.89), which is better than that with the glucose costs (Pearson's r = -0.5). Therefore, we demonstrate that S. cerevisiae tends to minimize protein resource, rather than glucose or energy, for synthesizing amino acids.


Asunto(s)
Aminoácidos/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Evolución Biológica , Metabolismo Energético/fisiología , Evolución Molecular , Ingeniería Metabólica/métodos , Biosíntesis de Proteínas/genética , Biosíntesis de Proteínas/fisiología , Proteoma/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
10.
Mol Cell Biol ; 42(1): e0024421, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34723653

RESUMEN

Ded1 is a conserved RNA helicase that promotes translation initiation in steady-state conditions. Ded1 has also been shown to regulate translation during cellular stress and affect the dynamics of stress granules (SGs), accumulations of RNA and protein linked to translation repression. To better understand its role in stress responses, we examined Ded1 function in two different models: DED1 overexpression and oxidative stress. DED1 overexpression inhibits growth and promotes the formation of SGs. A ded1 mutant lacking the low-complexity C-terminal region (ded1-ΔCT), which mediates Ded1 oligomerization and interaction with the translation factor eIF4G1, suppressed these phenotypes, consistent with other stresses. During oxidative stress, a ded1-ΔCT mutant was defective in growth and in SG formation compared to wild-type cells, although SGs were increased rather than decreased in these conditions. Unlike stress induced by direct TOR inhibition, the phenotypes in both models were only partially dependent on eIF4G1 interaction, suggesting an additional contribution from Ded1 oligomerization. Furthermore, examination of the growth defects and translational changes during oxidative stress suggested that Ded1 plays a role during recovery from stress. Integrating these disparate results, we propose that Ded1 controls multiple aspects of translation and RNP dynamics in both initial stress responses and during recovery.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , ARN Helicasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Gránulos Citoplasmáticos/metabolismo , ARN Helicasas DEAD-box/genética , Regulación Fúngica de la Expresión Génica/genética , Biosíntesis de Proteínas/fisiología , ARN Mensajero/genética , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico/fisiología
11.
Nat Struct Mol Biol ; 28(12): 1029-1037, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34887561

RESUMEN

Close coordination between chaperones is essential for protein biosynthesis, including the delivery of tail-anchored (TA) proteins containing a single C-terminal transmembrane domain to the endoplasmic reticulum (ER) by the conserved GET pathway. For successful targeting, nascent TA proteins must be promptly chaperoned and loaded onto the cytosolic ATPase Get3 through a transfer reaction involving the chaperone SGTA and bridging factors Get4, Ubl4a and Bag6. Here, we report cryo-electron microscopy structures of metazoan pretargeting GET complexes at 3.3-3.6 Å. The structures reveal that Get3 helix 8 and the Get4 C terminus form a composite lid over the Get3 substrate-binding chamber that is opened by SGTA. Another interaction with Get4 prevents formation of Get3 helix 4, which links the substrate chamber and ATPase domain. Both interactions facilitate TA protein transfer from SGTA to Get3. Our findings show how the pretargeting complex primes Get3 for coordinated client loading and ER targeting.


Asunto(s)
ATPasas Transportadoras de Arsenitos/metabolismo , Chaperonas Moleculares/metabolismo , Biosíntesis de Proteínas/fisiología , Proteínas de Pez Cebra/metabolismo , Animales , Microscopía por Crioelectrón , Retículo Endoplásmico/metabolismo , Humanos , Modelos Moleculares , Conformación Proteica , Ubiquitinas/metabolismo , Pez Cebra
12.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34948282

RESUMEN

Protein uL5 (formerly called L11) is an integral component of the large (60S) subunit of the human ribosome, and its deficiency in cells leads to the impaired biogenesis of 60S subunits. Using RNA interference, we reduced the level of uL5 in HEK293T cells by three times, which caused an almost proportional decrease in the content of the fraction corresponding to 80S ribosomes, without a noticeable diminution in the level of polysomes. By RNA sequencing of uL5-deficient and control cell samples, which were those of total mRNA and mRNA from the polysome fraction, we identified hundreds of differentially expressed genes (DEGs) at the transcriptome and translatome levels and revealed dozens of genes with altered translational efficiency (GATEs). Transcriptionally up-regulated DEGs were mainly associated with rRNA processing, pre-mRNA splicing, translation and DNA repair, while down-regulated DEGs were genes of membrane proteins; the type of regulation depended on the GC content in the 3' untranslated regions of DEG mRNAs. The belonging of GATEs to up-regulated and down-regulated ones was determined by the coding sequence length of their mRNAs. Our findings suggest that the effects observed in uL5-deficient cells result from an insufficiency of translationally active ribosomes caused by a deficiency of 60S subunits.


Asunto(s)
Regulación de la Expresión Génica/genética , Proteínas Ribosómicas/deficiencia , Proteínas Ribosómicas/metabolismo , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Células HEK293 , Humanos , Biosíntesis de Proteínas/fisiología , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , Proteínas Ribosómicas/genética , Ribosomas/metabolismo , Transcripción Genética/fisiología , Transcriptoma/genética
13.
Dev Cell ; 56(21): 2928-2937.e9, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34752747

RESUMEN

Although gene expression is tightly regulated during embryonic development, the impact of translational control has received less experimental attention. Here, we find that eukaryotic translation initiation factor-3 (eIF3) is required for Shh-mediated tissue patterning. Analysis of loss-of-function eIF3 subunit c (Eif3c) mice reveal a unique sensitivity to the Shh receptor patched 1 (Ptch1) dosage. Genome-wide in vivo enhanced cross-linking immunoprecipitation sequence (eCLIP-seq) shows unexpected specificity for eIF3 binding to a pyrimidine-rich motif present in subsets of 5'-UTRs and a corresponding change in the translation of these transcripts by ribosome profiling in Eif3c loss-of-function embryos. We further find a transcript specific effect in Eif3c loss-of-function embryos whereby translation of Ptch1 through this pyrimidine-rich motif is specifically sensitive to eIF3 amount. Altogether, this work uncovers hidden specificity of housekeeping translation initiation machinery for the translation of key developmental signaling transcripts.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Biosíntesis de Proteínas/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Ribosomas/metabolismo , Animales , Línea Celular , Factor 3 de Iniciación Eucariótica/genética , Humanos , Ratones , ARN Mensajero/genética , Transducción de Señal/fisiología
14.
Nat Commun ; 12(1): 6789, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34815424

RESUMEN

Processing bodies (p-bodies) are a prototypical phase-separated RNA-containing granule. Their abundance is highly dynamic and has been linked to translation. Yet, the molecular mechanisms responsible for coordinate control of the two processes are unclear. Here, we uncover key roles for eEF2 kinase (eEF2K) in the control of ribosome availability and p-body abundance. eEF2K acts on a sole known substrate, eEF2, to inhibit translation. We find that the eEF2K agonist nelfinavir abolishes p-bodies in sensory neurons and impairs translation. To probe the latter, we used cryo-electron microscopy. Nelfinavir stabilizes vacant 80S ribosomes. They contain SERBP1 in place of mRNA and eEF2 in the acceptor site. Phosphorylated eEF2 associates with inactive ribosomes that resist splitting in vitro. Collectively, the data suggest that eEF2K defines a population of inactive ribosomes resistant to recycling and protected from degradation. Thus, eEF2K activity is central to both p-body abundance and ribosome availability in sensory neurons.


Asunto(s)
Quinasa del Factor 2 de Elongación/metabolismo , Factor 2 de Elongación Peptídica/metabolismo , Cuerpos de Procesamiento/metabolismo , Ribosomas/metabolismo , Animales , Línea Celular Tumoral , Microscopía por Crioelectrón , Quinasa del Factor 2 de Elongación/genética , Ganglios Espinales/citología , Humanos , Masculino , Ratones , Ratones Noqueados , Nelfinavir/farmacología , Fosforilación/efectos de los fármacos , Cultivo Primario de Células , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/fisiología , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/ultraestructura
15.
Nat Struct Mol Biol ; 28(11): 889-899, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34759377

RESUMEN

Ribosomes are complex ribozymes that interpret genetic information by translating messenger RNA (mRNA) into proteins. Natural variation in ribosome composition has been documented in several organisms and can arise from several different sources. A key question is whether specific control over ribosome heterogeneity represents a mechanism by which translation can be regulated. We used RiboMeth-seq to demonstrate that differential 2'-O-methylation of ribosomal RNA (rRNA) represents a considerable source of ribosome heterogeneity in human cells, and that modification levels at distinct sites can change dynamically in response to upstream signaling pathways, such as MYC oncogene expression. Ablation of one prominent methylation resulted in altered translation of select mRNAs and corresponding changes in cellular phenotypes. Thus, differential rRNA 2'-O-methylation can give rise to ribosomes with specialized function. This suggests a broader mechanism where the specific regulation of rRNA modification patterns fine tunes translation.


Asunto(s)
Biosíntesis de Proteínas/fisiología , Proteínas Proto-Oncogénicas c-myc/genética , Procesamiento Postranscripcional del ARN/fisiología , ARN Ribosómico/metabolismo , Ribosomas/metabolismo , Línea Celular Tumoral , Células HeLa , Humanos , Metilación , Procesamiento Proteico-Postraduccional/fisiología , Proteínas Proto-Oncogénicas c-myc/biosíntesis , ARN Mensajero/genética
16.
Elife ; 102021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34787081

RESUMEN

De novo protein synthesis is required for synapse modifications underlying stable memory encoding. Yet neurons are highly compartmentalized cells and how protein synthesis can be regulated at the synapse level is unknown. Here, we characterize neuronal signaling complexes formed by the postsynaptic scaffold GIT1, the mechanistic target of rapamycin (mTOR) kinase, and Raptor that couple synaptic stimuli to mTOR-dependent protein synthesis; and identify NMDA receptors containing GluN3A subunits as key negative regulators of GIT1 binding to mTOR. Disruption of GIT1/mTOR complexes by enhancing GluN3A expression or silencing GIT1 inhibits synaptic mTOR activation and restricts the mTOR-dependent translation of specific activity-regulated mRNAs. Conversely, GluN3A removal enables complex formation, potentiates mTOR-dependent protein synthesis, and facilitates the consolidation of associative and spatial memories in mice. The memory enhancement becomes evident with light or spaced training, can be achieved by selectively deleting GluN3A from excitatory neurons during adulthood, and does not compromise other aspects of cognition such as memory flexibility or extinction. Our findings provide mechanistic insight into synaptic translational control and reveal a potentially selective target for cognitive enhancement.


Asunto(s)
Memoria/fisiología , Biosíntesis de Proteínas/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Femenino , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones Endogámicos C57BL , Ratones Transgénicos , Transducción de Señal
17.
Nat Commun ; 12(1): 6604, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34782646

RESUMEN

The fidelity of start codon recognition by ribosomes is paramount during protein synthesis. The current knowledge of eukaryotic translation initiation implies unidirectional 5'→3' migration of the pre-initiation complex (PIC) along the 5' UTR. In probing translation initiation from ultra-short 5' UTR, we report that an AUG triplet near the 5' end can be selected via PIC backsliding. Bi-directional ribosome scanning is supported by competitive selection of closely spaced AUG codons and recognition of two initiation sites flanking an internal ribosome entry site. Transcriptome-wide PIC profiling reveals footprints with an oscillation pattern near the 5' end and start codons. Depleting the RNA helicase eIF4A leads to reduced PIC oscillations and impaired selection of 5' end start codons. Enhancing the ATPase activity of eIF4A promotes nonlinear PIC scanning and stimulates upstream translation initiation. The helicase-mediated PIC conformational switch may provide an operational mechanism that unifies ribosome recruitment, scanning, and start codon selection.


Asunto(s)
Codón Iniciador/metabolismo , Iniciación de la Cadena Peptídica Traduccional/fisiología , Biosíntesis de Proteínas/fisiología , Ribosomas/metabolismo , Regiones no Traducidas 5' , Adenosina Trifosfatasas/metabolismo , Factor 4A Eucariótico de Iniciación/genética , Factor 4A Eucariótico de Iniciación/metabolismo , Células HEK293 , Humanos , Sitios Internos de Entrada al Ribosoma , ARN Helicasas/metabolismo , ARN Mensajero/metabolismo , Alineación de Secuencia , Levaduras/genética , Levaduras/metabolismo
18.
PLoS Genet ; 17(11): e1009599, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34807903

RESUMEN

microRNAs (miRNAs) are potent regulators of gene expression that function in a variety of developmental and physiological processes by dampening the expression of their target genes at a post-transcriptional level. In many gene regulatory networks (GRNs), miRNAs function in a switch-like manner whereby their expression and activity elicit a transition from one stable pattern of gene expression to a distinct, equally stable pattern required to define a nascent cell fate. While the importance of miRNAs that function in this capacity are clear, we have less of an understanding of the cellular factors and mechanisms that ensure the robustness of this form of regulatory bistability. In a screen to identify suppressors of temporal patterning phenotypes that result from ineffective miRNA-mediated target repression, we identified pqn-59, an ortholog of human UBAP2L, as a novel factor that antagonizes the activities of multiple heterochronic miRNAs. Specifically, we find that depletion of pqn-59 can restore normal development in animals with reduced lin-4 and let-7-family miRNA activity. Importantly, inactivation of pqn-59 is not sufficient to bypass the requirement of these regulatory RNAs within the heterochronic GRN. The pqn-59 gene encodes an abundant, cytoplasmically-localized, unstructured protein that harbors three essential "prion-like" domains. These domains exhibit LLPS properties in vitro and normally function to limit PQN-59 diffusion in the cytoplasm in vivo. Like human UBAP2L, PQN-59's localization becomes highly dynamic during stress conditions where it re-distributes to cytoplasmic stress granules and is important for their formation. Proteomic analysis of PQN-59 complexes from embryonic extracts indicates that PQN-59 and human UBAP2L interact with orthologous cellular components involved in RNA metabolism and promoting protein translation and that PQN-59 additionally interacts with proteins involved in transcription and intracellular transport. Finally, we demonstrate that pqn-59 depletion reduces protein translation and also results in the stabilization of several mature miRNAs (including those involved in temporal patterning). These data suggest that PQN-59 may ensure the bistability of some GRNs that require miRNA functions by promoting miRNA turnover and, like UBAP2L, enhancing protein translation.


Asunto(s)
Tipificación del Cuerpo/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/metabolismo , Péptidos y Proteínas de Señalización Intracelular/fisiología , MicroARNs/fisiología , Biosíntesis de Proteínas/fisiología , Gránulos de Estrés/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/metabolismo , Eliminación de Gen , Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Procesamiento Postranscripcional del ARN
19.
Am J Physiol Endocrinol Metab ; 321(5): E674-E688, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34632796

RESUMEN

Short-term disuse leads to muscle loss driven by lowered daily myofibrillar protein synthesis (MyoPS). However, disuse commonly results from muscle damage, and its influence on muscle deconditioning during disuse is unknown. Twenty-one males [20 ± 1 yr, BMI = 24 ± 1 kg·m-2 (± SE)] underwent 7 days of unilateral leg immobilization immediately preceded by 300 bilateral, maximal, muscle-damaging eccentric quadriceps contractions (DAM; subjects n = 10) or no exercise (CON; subjects n = 11). Participants ingested deuterated water and underwent temporal bilateral thigh MRI scans and vastus lateralis muscle biopsies of immobilized (IMM) and nonimmobilized (N-IMM) legs. N-IMM quadriceps muscle volume remained unchanged throughout both groups. IMM quadriceps muscle volume declined after 2 days by 1.7 ± 0.5% in CON (P = 0.031; and by 1.3 ± 0.6% when corrected to N-IMM; P = 0.06) but did not change in DAM, and declined equivalently in CON [by 6.4 ± 1.1% (5.0 ± 1.6% when corrected to N-IMM)] and DAM [by 2.6 ± 1.8% (4.0 ± 1.9% when corrected to N-IMM)] after 7 days. Immobilization began to decrease MyoPS compared with N-IMM in both groups after 2 days (P = 0.109), albeit with higher MyoPS rates in DAM compared with CON (P = 0.035). Frank suppression of MyoPS was observed between days 2 and 7 in CON (IMM = 1.04 ± 0.12, N-IMM = 1.86 ± 0.10%·day-1; P = 0.002) but not DAM (IMM = 1.49 ± 0.29, N-IMM = 1.90 ± 0.30%·day-1; P > 0.05). Declines in MyoPS and quadriceps volume after 7 days correlated positively in CON (r2 = 0.403; P = 0.035) but negatively in DAM (r2 = 0.483; P = 0.037). Quadriceps strength declined following immobilization in both groups, but to a greater extent in DAM. Prior muscle-damaging eccentric exercise increases MyoPS and prevents loss of quadriceps muscle volume after 2 (but not 7) days of disuse.NEW & NOTEWORTHY We investigated the impact of prior muscle-damaging eccentric exercise on disuse-induced muscle deconditioning. Two and 7 days of muscle disuse per se lowered quadriceps muscle volume in association with lowered daily myofibrillar protein synthesis (MyoPS). Prior eccentric exercise prevented the decline in muscle volume after 2 days and attenuated the decline in MyoPS after 2 and 7 days. These data indicate eccentric exercise increases MyoPS and transiently prevents quadriceps muscle atrophy during muscle disuse.


Asunto(s)
Ejercicio Físico/efectos adversos , Inmovilización/fisiología , Traumatismos de la Pierna/rehabilitación , Proteínas Musculares/biosíntesis , Atrofia Muscular/prevención & control , Adulto , Ejercicio Físico/fisiología , Humanos , Pierna/patología , Traumatismos de la Pierna/metabolismo , Traumatismos de la Pierna/fisiopatología , Masculino , Contracción Muscular/fisiología , Fuerza Muscular/fisiología , Músculo Esquelético/lesiones , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Biosíntesis de Proteínas/fisiología , Músculo Cuádriceps/metabolismo , Músculo Cuádriceps/patología , Músculo Cuádriceps/fisiología , Adulto Joven
20.
Cell Rep ; 37(2): 109806, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34644561

RESUMEN

Tactical disruption of protein synthesis is an attractive therapeutic strategy, with the first-in-class eIF4A-targeting compound zotatifin in clinical evaluation for cancer and COVID-19. The full cellular impact and mechanisms of these potent molecules are undefined at a proteomic level. Here, we report mass spectrometry analysis of translational reprogramming by rocaglates, cap-dependent initiation disruptors that include zotatifin. We find effects to be far more complex than simple "translational inhibition" as currently defined. Translatome analysis by TMT-pSILAC (tandem mass tag-pulse stable isotope labeling with amino acids in cell culture mass spectrometry) reveals myriad upregulated proteins that drive hitherto unrecognized cytotoxic mechanisms, including GEF-H1-mediated anti-survival RHOA/JNK activation. Surprisingly, these responses are not replicated by eIF4A silencing, indicating a broader translational adaptation than currently understood. Translation machinery analysis by MATRIX (mass spectrometry analysis of active translation factors using ribosome density fractionation and isotopic labeling experiments) identifies rocaglate-specific dependence on specific translation factors including eEF1ε1 that drive translatome remodeling. Our proteome-level interrogation reveals that the complete cellular response to these historical "translation inhibitors" is mediated by comprehensive translational landscape remodeling.


Asunto(s)
Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , Animales , Benzofuranos/farmacología , Línea Celular Tumoral , Factor 4A Eucariótico de Iniciación/efectos de los fármacos , Factor 4A Eucariótico de Iniciación/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Cultivo Primario de Células , Biosíntesis de Proteínas/fisiología , Proteómica/métodos , Ribosomas/metabolismo , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Triterpenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA